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Abstract

Lyme disease is the most commonly reported vector-borne disease in the United States and is
transmitted by /xodes scapularisin the eastern US and /. pacificus in the west. The causative
agents, Borrelia burgdorferi sensu stricto (Bbss) and B. mayoniibelong to the B. burgdorferi sensu
lato (Bbsl) species complex. An additional eight species of Bbsl have been identified in /xodes
species ticks in the US, but their geographic distribution, vector associations, human encounter
rates and pathogenicity in humans are poorly defined. To better understand the geographic
distribution and vector associations of Bbsl spirochetes in frequent and infrequent human-biting
Ixodes species ticks in the US, we previously screened 29,517 host-seeking /. scapularis or 1.
pacificusticks and 692 ticks belonging to eight other /xodes species for Borrelia spirochetes using
a previously described tick testing algorithm that utilizes a combination of real-time PCR and
Sanger sequencing for Borrelia species identification. The assay was designed to detect known
human pathogens spread by /xodes species ticks, but it was not optimized to detect Bbsl co-
infections. To determine if such co-infections were overlooked particularly in ticks infected with
Bbss, we retested and analyzed a subsample of 845 Borrelia infected ticks using a next generation
sequencing multiplex PCR amplicon sequencing (MPAS) assay that can identify Borrelia species
and Bbsl co-infections. The assay also includes targets that can molecularly confirm identifications
of /xodes species ticks to better inform pathogen-vector associations. We show that Bbss is the
most prevalent species in /. scapularis and /1. pacificus, other Bbsl species were rarely detected
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in /. scapularis and the only Bbsl co-infections identified in /. scapularis were with Bbss and B.
mayonii. We detected B. andersoniiin /. dentatus in the Mid-Atlantic and Upper Midwest regions,
B. kurtenbachiiin I. scapularis in the Upper Midwest, B. bissettiae in I. pacificusand 1. spinipalpis
in the Northwest, and B. carolinensisin [. affinis in the Mid-Atlantic and Southeast, and B. /aner
in /. spinipalpis in the Northwest. Twelve of 62 (19.4%) Borrelia-infected /. affinis from the
Mid-Atlantic region were co-infected with Bbss and B. carolinensis. Our data support the notion
that Bbsl species are maintained in largely independent enzootic cycles, with occasional spill-over
resulting in multiple Bbsl species detected in /xodes species ticks.

Keywords
Tick surveillance; Next generation sequencing; Blacklegged tick; Borrelia burgdorferi sensu lato

1. Introduction

Lyme disease is the most commonly reported tick-borne disease in the United States (US)
and in Europe (Marques et al., 2021). It is caused by species in the Borrelia burgdorferi
sensu lato (Bbsl) species complex and spread by /xodes species ticks (Margos et al., 2011;
Eisen, 2020). The Bbsl species complex currently includes 20 named and three proposed
genospecies, including the agents of Lyme disease in North America (B. burgdorferi sensu
stricto (Bbss) and B. mayonoii) and in Europe (B. gariniiand B. afzeli) (Wolcott et al.,
2021). The list of named Bbsl species has expanded rapidly, with eight species recognized
since 2011 (Margos et al., 2011; Rudenko et al., 2011; Wolcott et al., 2021).

In addition to the Lyme disease causing spirochetes, Bbss (Benach et al., 1983; Steere et

al., 1983) and B. mayonii (Pritt et al., 2016a, 2016b), there are currently an additional

eight named Bbsl complex species found in /xodes spp. ticks in the US: B. americana, B.
andersonii, B. bissettiae, B. californiensis, B. carolinensis, B. kurtenbachii, B. lanei, and B.
maritima (Wolcott et al., 2021). Borrelia burgdorferis.s. has been the focus of numerous
vector competence and ecological studies, but information on the geographic ranges, natural
enzootic vectors and hosts, or the potential to infect humans is limited for other Bbsl species
(Margos et al., 2011; Rudenko et al., 2011; Wolcott et al., 2021). Borrelia burgdorferis.s. is
commonly detected in /xodes scapularisin the Upper Midwest, Northeast and Mid-Atlantic
regions and in /. pacificus in the Pacific Coast States (Lehane et al., 2021; Fleshman et al.,
2021, 2022). Borrelia mayonii has been detected at very low prevalence in /. scapularis only
in the Upper Midwest (Lehane et al., 2021; Fleshman et al., 2022). There is limited evidence
that B. bissettiae and B. kurtenbachii can cause human illness (Rudenko et al., 2011, 2016;
Girard et al., 2011; Golovchenko et al., 2016). Reports of Borrelia sequences most similar
to B. kurtenbachiiand B. bissettiae strain types were detected in clinical samples from
California, and these species have also been detected in European Lyme Borreliosis patients
(Rudenko et al., 2011; Girard et al., 2011; Strle et al., 1997). Borrelia kurtenbachiihas been
described in /. scapularis at low prevalence in the Upper Midwest (Johnson et al., 2018), but
1. scapularis is generally not considered to be the primary enzootic vector (Margos et al.,
2014). Borrelia bissettiae is more wide-spread and has been detected in several tick species
including /. pacificus, 1. spinipalpis, 1. minor, and /. affinis (Postic et al., 1998; Eisen et al.,
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2009; Margos et al., 2011). One study reported detecting B. andersonii and B. americana
in suspected Lyme disease patient samples (blood, skin biopsy) from the US by molecular
methods (PCR and Sanger Sequencing); this currently is the only report of the detection of
these Bbsl species in clinical samples (Clark et al., 2014).

Bbsl spirochetes are believed to be maintained in independent enzootic cycles, often
involving /xodes spp. vectors that bite humans less commonly than /. scapularis or 1.
pacificus, but in some cases there is “spill over” of Bbsl into frequent human-biting ticks
that may serve as bridging vectors to humans (Oliver et al., 2003; Eisen et al., 2009;

Maggi et al., 2010; Margos et al., 2011, 2014; Wolcott et al., 2021; Eisen, 2022). Although
pathogenicity in humans has not been demonstrated for many Bbsl species, it is not clear if
they are truly non-pathogenic in humans, or if they are indeed pathogenic but infrequently
encountered and identified or differentiated in clinical specimens (Rudenko et al., 2011;
Margos et al., 2011). Many previous studies that explored the geographic distributions and
host associations of Bbsl were limited by using assays that could not detect Bbss and Bbsl
co-infections, and therefore may under-represent the true prevalence of infections. To better
understand the geographic distribution and vector associations of Bbsl spirochetes in the
US, we retested host-seeking /xodes spp. nymphs and adults collected across the US that
were previously identified as infected with Borrelia spirochetes based on a TagMan PCR
tick testing algorithm (Graham et al., 2018). The assay was designed to detect known human
pathogens (e.g., Borrelia burgdorferis.s., B. mayonii, and Borrelia miyamotoi) spread by
Ixodes spp. ticks, but it was not optimized to detect Bbsl co-infections. To determine if such
co-infections were overlooked, we retested a subsample of ticks using a recently described
multiplex PCR amplicon sequencing (MPAS) assay that can identify to species and detect
co-infections with Bbsl species (Hojgaard et al., 2020). We modified the assay to include
targets that can be sequenced to molecularly confirm identifications of /xodes spp. ticks to
better inform pathogen-vector associations.

2. Materials and methods

2.1. Source of tick samples

Host-seeking /xodes spp. nymphal and adult ticks were collected by state public health
partners participating in CDC’s National Tick Surveillance Program (Eisen and Paddock,
2021) or through collaborative research projects from May 2012 to November 2022.

Ticks were collected using dragging, flagging, or CO» trapping techniques from 23 states,
representing five geographic regions (Tables 1 and 2). The ticks were morphologically
identified by trained staff using taxonomic keys (e.g., Keirans and Clifford 1978, Durden
and Keirans 1996) and were shipped in ~70 % ethanol for tick-borne pathogen testing to the
CDC'’s Division of Vector-Borne Diseases in Fort Collins, Colorado.

2.2. ldentification of Bbsl Bbss and B. mayonii positive samples in hostseeking Ixodes
spp. ticks using the tick testing algorithm (TTA)

Testing results for Bbss, B. mayoniiand B. miyamotoi from the majority of /. scapularis and
1. pacificus ticks included in this study were reported previously (Lehane et al., 2021; Foster
etal., 2023). Ticks were tested individually using a tick testing algorithm (TTA) described
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by Graham et al. (2018). Briefly, total nucleic acid was extracted from each tick following
previously described protocols (Lehane et al., 2021; Graham et al., 2018). The tick DNA
was then screened for Bbss, B. mayonii, B. miyamotoi, Babesia microti, and Anaplasma
phagocytophilum using a series of TagMan-based multiplex real-time PCRs (Graham et al.,
2018). The Borreliatesting portion of the TTA is summarized in Fig. 1, and the Babesia
microti and Anaplasma phagocytophilum testing is detailed by Graham et al. (2018). The
TTA uses a 16S rRNA pan-Borreliatarget to detect Borrelia spp. If a sample tested positive
for the 16S rRNA pan-Borreliatarget, additional targets were used to identify Bbss (Bbsl
fliD, Bbss oppA2), B. mayonii (Bbsl fliD, Bmay oppA2), and B. miyamotoi (Bm gilpQ,

Bm purB) infections (Fig. 1, Graham et al., 2018). One positive control (5 pl of Bbss, B.
maynoii, or B. miyamotoi genomic DNA), 6 tick free extraction controls (5 ul), and one no
template control (5 pl of molecular grade water) were included in each PCR. Tick specimens
that were positive for the pan- Borrelia target, and negative for Bbss, B. mayonii, and B.
miyamotoi targets were considered positive for Bbsl. Sanger sequencing was then performed
on only the Bbsl positive samples using two targets capable of determining the Bbsl species
(Clp protease subunit A (c/pA) and dipeptidyl amonopeptidase (pep.X)) (Graham et al.,
2018). The 850bp region of the Clp protease subunit A (c/pA) gene and a 668bp region of
the dipeptidyl amonopeptidase (pep.X) gene were sequenced using a 3130 Genetic Analyzer
(Applied Biosystems, Foster City, CA) (Graham et al., 2018). If a clean sequence could

not be obtained from the Sanger sequencing of pep.X or c/pA, the sample was designated

as “Borrelia positive, species undetermined.” In this study, B. miyamotoi positive samples
are included in the overall Borrelia spp. positive count, but only samples positive for the
Bbsl species complex were further analyzed. The TTA testing results reported in Tables

1 and 2 for Bbss and B. mayonii were based on the real-time PCR results for the targets
listed above, and the Bbsl results were based the real-time PCR 16S pan-Borrelia result and
Sanger sequencing of pep.Xand c/pA.

2.3. Description of modified MPAS assay

A modified targeted NGS MPAS assay described by Hojgaard et al. (2020) was used to
re-test selected Bbsl positive tick samples that were identified by the TTA (see Section 2.6
Sample Selection for MPAS Testing). The modifications included the use of genus level
primers that produce a species-specific Borrelia sequence for a 335 bp region of the flaB
gene and a species-specific tick sequence for a 135 bp region of the mitochondrial (mt) 16S
rRNA gene (tick 16S mt-rRNA) (Table 3). The primary multiplex PCRs were performed in
25 pl reactions that contained 5 pl of nucleic acid sample, 12.5 pl Sso Advanced (BioRad,
CA, USA), 300 nM of each primer, and molecular grade water. The primary PCRs were
performed on a C1000 Touch thermal cycler (Bio-Rad, CA, USA) and included a denature
step of 98 °C for 3 min, followed by 40 cycles of 98 °C for 20 s, 58 °C for 20 s and

68 °C for 1 min, and a final 5 min incubation at 68 °C (Hojgaard et al., 2020). After the
primary multiplex PCR, the NGS libraries were prepared following the procedures described
by Hojgaard et al. (2020). Briefly, the library preparation consisted of a purification of the
initial multiplex PCR products, the addition of Nextera XT Indexes (lllumina, CA, USA)
and a purification of the indexed products (Hojgaard et al., 2020). Finally, the libraries were
pooled, purified, and quantified with a Qubit 4 Fluorometer (Thermo Fisher Scientific, MA,
USA) (Hojgaard et al., 2020). The libraries were sequenced using the MiSeq Reagent Kit
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Nano 500 cycle v2 (Illumina) on an IHlumina MiSeq (lllumina) following the manufacturer’s
instructions. One Positive (5 ul of Bbss B31 and /. scapularis DNA) and two negative (5 pl
molecular grade water) controls were included in each NGS library.

2.4. MPAS primer evaluation

The Borrelia flaB and tick 16S mt-rRNA primers were evaluated to confirm that the
sequences produced from each target could distinguish known species of Borreliaand

hard ticks, respectively. Hard tick specimens representing 20 species (Supplement A: Table
S1) were used to evaluate the tick 16S mt-rRNA primers. These specimens were initially
identified by trained staff using morphological keys (Keirans and Clifford, 1978; Durden and
Keirans, 1996). Total nucleic acid was extracted with a KingFisher Flex MagMax CORE
Nucleic Acid Purification Kit (Thermo Fisher Scientific, USA) following the manufacturer’s
protocols. A total of 31 Borrelia reference DNA samples representing 14 Borrelia spp.
(Supplement A: Table S2) were used to evaluate the f/laB primers. The tick and Borrelia
DNA were sequenced using the MPAS assay described above and the resulting FASTQ

files were analyzed with the CLC Genomic Workbench 12.0.2 (Qiagen, Aarhus, Denmark)
and DNASTAR Lasergene 17 software (DNASTAR, Madison, WI, USA). The unique tick
16S mt-rRNA and f/aB sequences were submitted to GenBank (0Q915478- 0Q915484,
0Q916921-0Q916934, 0Q923300, 0Q923301)

2.5. MPAS sequencing analysis

The FASTQ files produced from sequencing the tick DNA samples were analyzed using

a custom bioinformatics pipeline with the default parameters described by Osikowicz et

al. (2023). Briefly, this pipeline first checks the quality of the FASTQ files and then the
primers are trimmed, error correction is performed, read pairs are merged, and the reads
are grouped into amplicon sequence variants (ASVs). The ASVs are then aligned to the
reference sequences using a 95 % and 98 % sequence similarity for the Borrelia spp.

and tick reference sequences, respectively. The reference sequences used for sequencing
analysis can be found in Supplement B: Table S1. A sample was considered acceptable if

it had sufficient tick reads (tick 16S mt-rRNA) and Borreliareads (f/aB). The minimum
read cut-off call for a sample to be considered positive for Borrelia spp. was set to 50

reads, and the acceptable tick 16S mt-rRNA reads per sample must be within three times
the standard deviation of the average log of tick 16S mt-rRNA reads for a sequencing

run (Osikowicz et al., 2023). The identified Bbsl sequences, tick sequences, and reference
sequences were analyzed with NCBI BLAST (BLAST: Basic Local Alignment Search Tool
(nih.gov)) and maximum likelihood phylogenetic tress were created using MEGA-X v10.0.5
software (Kumar et al., 2018). The Bbsl reference sequences selected for the phylogenetic
analysis consisted of a combination of the f/aB sequences generated from our Borrelia
isolate collection (Supplement A: Table S2, Fig. S2) and the appropriate f/aB regions from
complete chromosome or complete genome Borrelia spp. sequences that have been uploaded
to GenBank (Fig. 2). The identified Borrelia flaB sequence types we detected in this study
were grouped into Borrelia genospecies based on the f/aB phylogenetic relationship we
observed in this study. The genospecies used in this study serve the purpose of discussing
the ecological associations of Borreliaand /xodes spp. ticks, not the characterization of
novel Borrelia species.
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2.6. Sample selection for MPAS testing

Ticks that were positive for Borreliaspp. by the TTA were re-tested with MPAS to (1) assess
the rates of Borrelia coinfections that may have been missed with the TTA, (2) confirm tick
species identifications using molecular methods and (3) identify the Bbsl genospecies. Two
groups of samples were selected to be tested with the MPAS assay based on previous testing
with the TTA (Fig. 1). The first group of samples consisted of adults of any /xodes spp.

that tested positive for Borrelia spp. with, at minimum, the pan-Borrelia 16S rRNA target
with the TTA (Graham et al., 2018). This sample set was selected to assess the frequency

of Bbsl and Bbss co-infections in known Borrelia positive samples and to confirm the
morphological tick identification. Adult samples were selected to increase the likelihood of
ticks being infected with Bbsl because they would have fed on two vertebrate hosts as larvae
and nymphs.

The second group selected for MPAS testing consisted of samples (adults or nymphs of
any /xodes spp.) that were identified as positive for Bbsl with the TTA (pan-Borrelia 16S
rRNA positive, but negative for Bbss, B. mayonii, or B. miyamotoitargets, and Sanger
sequenced with pepX or clpA) (Fig. 1). These samples were amplified and sequenced with
the MPAS assay to confirm the morphological tick identification and further evaluate the
Bbsl sequence. Not all of the identified TTA Bbsl positive samples were available for
additional MPAS sequencing, due to sample depletion during the original tick testing.

Any samples that were positive for B. miyamotoi are included in the overall Borrelia spp.
positive count, but these results were not further evaluated. Results of the TTA and NGS
testing are shown in Tables 1 and 2.

3. Results

3.1. Summary of TTA results

As part of CDC’s national tick surveillance program or collaborative research projects, we
tested a total of 28,667 /. scapularis, 850 1. pacificus, 392 1. affinis, 174 1. angustus, 80

1. spinipalpis, 35 1. dentatus, five 1. brunneus, four /. auritulus, one /. minor, and one /.
muris (Tables 1, 2) using the previously described TTA (Graham et al., 2018). Results from
testing /. scapularisand /1. pacificus for Bbss, B. mayonii and B. miyamotoi (among other
human pathogens) were summarized for subsamples of these ticks in Lehane et al. (2021)
and Foster et al. (2023). We separated testing results by tick species and their frequency of
recorded encounters with humans (Eisen, 2022).

Ixodes scapularis and I. pacificus are the most common /xodes species ticks to bite humans
in the US (Eisen, 2022). Among the /. scapularis tested using the TTA, 5901 (43.2 %)

of 13,662 adult and 2685 (17.9 %) of 15,005 nymphs were positive for Borreliaspp. and
among those, the majority of infections were identified as Bbss (Table 1); 7 (0.1 %) of
6512 adults and 16 (0.2 %) of 7155 nymphs from the Upper Midwest were positive for

B. mayonii. Of these 23 B. mayonii infected ticks, 11 ticks (3 adults and 8 nymphs) were
co-infected with Bbss. Borrelia kurtenbachiiwas detected in five nymphs and one adult
from the Upper Midwest. Among the 830 adult and 20 nymphal /. pacificus tested by TTA,
42 (5.1 %) adults and 1 (5.0 %) nymph were identified as Borrelia positive. A total of 23
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adults (2.8 %) and a single nymph (5.0 %) were infected with Bbss. Twelve adults were
infected with B. miyamotoi, five adults were identified as carrying B. bissettiae, and two
were infected with B. /ane/ (Table 1).

Ixodes affinis was the most commonly submitted /xodes spp. among the tick species that
humans encounter less frequently (Table 2) (Eisen, 2022). Submissions were derived from
the Mid-Atlantic and Southeast regions. /xodes affinis was the only species among the less
frequently encountered ticks that was infected with Bbss. Among the 392 /. affinis tested,
228 (58.2 %) were infected with Bbss (Table 2). Three named Bbsl species were identified:
B. andersonii (in 1. dentatus), B. bissettiae (in /. spinipalpisand /. affinis), B. lanei (in /.
spinipalpis). A total of 27 Borrelia positive ticks were identified by the TTA, but the species
could not be determined by that assay (Table 2).

A subsample of 974 ticks that were identified as Borrelia positive by TTA were further
tested with the MPAS assay and 845 samples passed the acceptable read thresholds and were
further analyzed as described in Sections 3.3-3.6.

3.2. MPAS primer evaluation

The flaB and tick 16S mt-rRNA primers used in the MPAS assay produced unique
sequences for each species of Borreliaand hard tick reference DNA, respectively
(Supplement A: Figs. S1 and S2). The percent similarity between the tick species sequences
were all £97.8 %. The most similar sequences were produced from the /. dentatus and

1. affinis reference DNA (97.8 % similar). The f/aB reference sequences separated the
characterized Borrelia species by <99.1 % sequence similarity, and the f/aB sequences for B.
carolinensis strain SW22 (GenBank 0Q915480) and B. bissettiae strain DN127 (GenBank
CP002746) were the most similar.

3.3. Molecular tick ID confirmation

In total, we tested 974 tick samples with the MPAS assay and 845 samples contained
acceptable tick 16S mt-rRNA and f/aB reads and were used in the analysis. Most of the tick
DNA samples tested were molecularly identified as /. scapularis (741 of 845, 87.7 %). The
remaining ticks were molecularly identified as /. affinis (64 of 845, 7.6 %), /. pacificus (27
of 845, 3.2 %), /. spinipalpis (7 of 845, 0.8 %), /. dentatus (5 of 845, 0.6 %), and /. auritulus
(1 of 845, 0.1 %). The tick 16S mt-rRNA sequencing results for 99.4 % (840 of 845) of the
tick DNA samples tested matched the original morphological identification and five samples
contained sequences that did not match the original morphological identification (Table 4,
Fig. 3). All of these tick samples were positive for Bbsl with the MPAS assay. The Bbsl
genospecies detected in these samples were only found in other tick specimens with the
same molecular 1D and not the original morphological ID (Table 4).

3.4. MPAS sequencing analysis

The median number of reads per sample for the tick 16S mt-rRNA and f/aB targets were
4251 (range: 789-37,782) and 389 (range: 55-5604), respectively. There was a median of
23.5 (Range: 0-214) tick 16S mt-rRNA reads and a median of 0 (Range: 0-9) f/aB reads
identified in the negative controls; and all negative control read counts fell below the assay
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thresholds for calling a sample negative for a pathogen (Hojgaard et al., 2020; Osikowicz et
al., 2023).

We identified a total of 22 unique #/aB sequence types (FST 1-22), including six
genospecies (B. andersonii, B. bissettiae, B. carolinensis, B. finlandensis, B. kurtenbachii,
and B. /anei) from ticks tested with this MPAS assay (Table 5). All unique sequences were
submitted to GenBank (0Q915485-0Q915507). The sequence types were grouped into a
Bbsl genospecies based on the f/aB phylogenetic relation to the reference sequences we used
in this study (Fig. 2). The genospecies designations were used as Bbsl species calls for the
detailed MPAS assay results below.

Among the 768 /. scapularis or /. pacificus ticks that were identified as Borrelia positive

by MPAS, 733 infections were categorized as Bbss, 3 as B. mayonii, and a single tick was
co-infected with Bbss and B. mayonii (Table 1). The two Bbsl infections that were detected
were consistent with the TTA testing: B. bissettiae was detected in /. pacificus from the
Northwest, and B. kurtenbachiiwas detected in /. scapularis in the Upper Midwest (Table
1). It does not appear that Bbsl species commonly co-infect /. scapularis or 1. pacificus with
Bbss.

Consistent with the TTA testing results (Table 2), we identified Bbss in /. affinis with

the MPAS assay. We confirmed the Bbsl species identities revealed with TTA testing, but
further resolved the Bbsl species identities with MPAS. For example, 27 specimens were
identified as undetermined Borreliaby TTA, none were undetermined using MPAS (Table
2). All of these samples were positive for Borrelia spp. with the TTA, but subsequent Sanger
sequencing did not produce a clean sequence that could determine the Borrelia species. Most
of these TTA unidentified Borrelia spp. were found in /. affinis from the Mid-Atlantic and
were identified as B. carolinensis with MPAS. The MPAS assay also identified B. andersonii
in /. dentatus from the Mid-Atlantic and Upper Midwest, and B. bissettiae, B. lanei, and a
sequence most similar to B. finlandensis in 1. spinijpalpis from the Northwest (Table 2).

3.5. Comparison of Bbss and Bbsl co-infections yielded by TTA and MPAS assays

The MPAS assay detected Bbss and Bbsl co-infections in 13 tick samples (Table 6). Twelve
ticks molecularly identified as /. affinis adults from the Mid-Atlantic region were co-infected
with Bbss and B. carolinensis. These samples were characterized as infected with only Bbss
using the TTA assay; B. carolinensis infections were overlooked using the TTA. One adult

1. scapularis from the Upper Midwest was positive for Bbss and B. mayoniibased on MPAS
testing, but positive for only Bbss with the TTA assay. The TTA assay detected Bbss and B.
mayonii co-infections in 11 /. scapularis (8 nymphs, 3 adult) from the Upper Midwest. Only
one of these samples was tested with MPAS, and this assay only detected B. mayoniiin this
sample.

3.6. Bbsl sequence variation identified by MPAS assay

The MPAS assay identified multiple f/laB sequence types for a given genospecies (Table
5). This is potentially significant for public health or ecological studies, as Bbsl species
nomenclature changes over time and some divergent clades might later be characterized
as new species. The genospecies B. carolinensis was detected in /. affinis from the Mid-
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Atlantic and Southeast regions. The f/aB sequence types we observed (FST 11, 12, and 13)
grouped with the B. carolinensis (GenBank CP124072) reference sequence (Fig. 2, Table 5),
but was also similar to B. burgdorferi SCGT-10 (GenBank AF264895), for which there is
no whole genome sequence available, and is therefore not included in our phylogenetic tree.
Borrelia burgdorferi SCGT-10 was named a strain type of B. bissettiae (Lin et al., 2004),
prior to the first description of B. carolinensis, and the flaB sequences are closely related
(99.4 % similar).

We also observed B. kurtenbachiiin /. scapularis from the Midwest, and B. bissettiaein /.
pacificus and 1. spinipalpis from the Northwest region. A single f/aB sequence type (FST
15) detected in one /. auritulus from the Northwest, was 94.9 % similar to B. garinii Ekb712
(GenBank CP075418) and is likely an uncharacterized Borrelia species (Fig. 2).

The MPAS assay was able to identify multiple f/aB sequence types of the same genospecies
within a sample (Table 6). Two /. dentatus nymphs, one from the Mid-Atlantic (FST 3

and FST 4) and the other from the Upper Midwest (FST 5, FST 7, and FST 8), contained
multiple B. andersonii flaB sequence types. One /. dentatus adult from the Mid-Atlantic
contained two B. andersonii flaB sequence types (FST 2 and FST 6) (Tables 5, 6). Four

1. affinis adults (3 ticks with FST 11 and FST 12 and one tick with FST 11 and FST 13)
contained multiple B. carolinensis flaB sequence types and one /. spinipalpis nymph (FST 9
and FST 10) contained multiple B. bissettiae flaB sequence types (Tables 5, 6). Finally, one
1. spinipalpis adult contained two B. /anei flaB sequence types (FST 17 and FST 21), and

a single /. spinipalpis adult contained two B. /anei flaB sequence types (FST 18 and FST
19) and one f/aB sequence type (FST 14) 97.9 % similar to B. finlandensis Z11 (GenBank
CP124070) (Tables 5, 6). This Bbsl species has previously been reported in /. ricinus from
Europe (Casjens et al., 2011; Kowalec et al., 2017).

4. Discussion

As part of CDC’s national tick surveillance program, we tested 30,209 host-seeking /xodes
spp. ticks comprised of ten species collected over a decade from 23 states, representing

five geographical regions. The prevalence of human pathogens detected in /. scapularis

and /. pacificus were reported previously (Lehane et al., 2021; Foster et al., 2023). /xodes
scapularis was the most frequently submitted tick species, and it is the most commonly
reported /xodes spp. tick encountered by humans in the eastern US (Eisen, 2022). Consistent
with previous studies, Bbss was prevalent in host-seeking nymphs and adults collected

from the Northeast, Mid-Atlantic, and Upper Midwest regions (Porter et al., 2021), where

1. scapularis serves as the primary enzootic vector in cycles involving white-footed mice
and other rodents as Bbss reservoirs (Spielman et al., 1985; Tsao et al., 2021). Borrelia
mayoniiwas detected only in /. scapularis in the Upper Midwest and at very low prevalence.
Nearly half of /. scapularis infected with B. mayonii (11 of 23 ticks) were co-infected with
the other North American Lyme disease agent, Bbss. The enzootic transmission cycle of

B. mayoniiis poorly defined, but the spirochete has been isolated from white-footed mice
(Johnson et al., 2017). Borrelia burgdorferis.s. and B. mayonii co-infections were detected
previously in white-footed mice collected in Minnesota (Johnson et al., 2017). Together, the
tick surveillance and small mammal testing data indicate a shared transmission cycle of B.
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mayonii co-circulating with Bbss in the Upper Midwest. However, insufficient numbers of
other /xodes spp. ticks were tested from this region, making it unclear if there is another
enzootic vector involved in the B. mayoniitransmission cycle.

Despite retesting a subsample of /. scapularis with an assay capable of identifying Bbsl co-
infections, we did not detect any additional co-infections in /. scapularis, suggesting that our
TTA testing likely did not overlook significant numbers of Bbsl that co-occurred with Bbss
and indeed host-seeking /. scapularis are rarely infected with other Bbsl species. Despite
testing 28,667 /. scapularis, we detected only six ticks infected with B. kurtenbachii from
the upper Midwest (four described previously by Johnson et al. 2018), but no other Bbsl
species were detected in this tick species. Notably, there is limited evidence suggesting B.
kurtenbachii infects humans (Rudenko et al., 2011), but the likelihood of human encounters
with infected ticks appears to be geographically limited and uncommon. The majority of
Bbsl infections were detected in other /xodes spp. ticks: B. andersoniiin [. dentatusin

the Mid-Atlantic and Upper Midwest, B. bissettiae in /. pacificusand /. spinipalpisin the
Northwest, B. carolinensisin [. affinis in the Mid-Atlantic and Southeast, and B. /aneiin

1. spinipalpis in the Northwest. These findings support the notion that Bbsl species are
maintained in largely independent enzootic cycles, with occasional spill-over resulting in
multiple Bbsl species detected in /xodes spp. ticks. Given the fairly low infection rates and
the finding that Bbsl species are more commonly found in species that bite humans less
frequently than /. scapularis, we expect human encounters with Bbsl-infected ticks is rare,
but encounter risk varies by geographic region.

Submissions of infrequent human-biting ticks were relatively few, and the TTA assay
could not accurately detect Bbsl co-infections, and our MPAS sub-sampling was focused
on ticks that tested positive for Borrelia spp. using the TTA assay. Because of these
limitations, we cannot accurately estimate the prevalence of Bbsl species in these tick
species. However, the MPAS assay was able to resolve the species identities of several
“undetermined” or coinfected ticks detected using the TTA assay (Hojgaard et al., 2020;
Osikowicz et al., 2023). By adding the molecular confirmation of /xodes spp. identification
to MPAS, we are confident in the identification of the Bbsl f/aB sequence types and vector
associations reported here. The Bbsl-vector associations that we describe are consistent
with previous studies, as recently reviewed by Wolcott et al. (2021). Nonetheless, one
limitation of the MPAS assay is that the single Borreliatarget (flaB) cannot be used to
accurately characterize newly identified Bbsl species. The MPAS assay was developed for
high throughput testing. Therefore, we chose a single f/aB target for its ability to separate
known Bbsl species and the tick 16S mt-rRNA target for /xodes species identification.
Subsequent Borrelia multi-locus sequencing typing (MLST) or whole genome sequencing
would be needed to characterize novel Bbsl species. The genospecies we identified in this
study are representative of the closest identified #/aB reference sequence to the FST at this
time, and this association may change in the future as new Bbsl species are described.

Although humans reportedly encounter /. pacificus less frequently than /. scapularis at

a national scale, the rate of human encounters with this tick in Pacific Coast states is
significant (Nieto et al., 2018; Dykstra et al., 2020; Eisen, 2022). Based on ticks collected
from Washington and Oregon, we detected Bbss in /. pacificus nymphs (5.0 %) and adults
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(2.8 %); B. bissettiae was also detected at low prevalence (0.6 %) in /. pacificus adults.
Although ticks from California were not included in this study, the reported rates of
infection are consistent with those reported from California (Padgett et al., 2014; Rose et
al., 2019) and ecological relationships may be similar between northern California, Oregon
and Washington. Studies from northern California suggest that B. bissettiae is maintained in
enzootic cycles involving woodrats and deer mice as reservoirs, and /. spinipalpis serving
as the primary enzootic vector (Eisen et al., 2003, 2009). /xodes pacificus may acquire
infections infrequently through feeding on infected woodrats and deer mice and could serve
as bridging vectors to humans (Eisen et al., 2003). In our study, we detected B. bissettiae in
1. spinipalpis, but Bbss was not detected in these generally nest-associated (nidicolous) ticks.
Borrelia burgdorferis.s. is believed to be maintained in an independent transmission cycle
in northern California. In general, deer mice and woodrats, which serve as reservoirs of B.
bissettiae, are seldomly infected with Bbss. Instead, western gray squirrels are commonly
infected with Bbss, and they are often infested with /. pacificus (Lane et al., 2005; Eisen

et al., 2009). Borrelia bissettiae has been implicated as a potential human pathogen, but
case reports are rare (Margos et al., 2016; Golovchenko et al., 2016; Rudenko et al.,

2011, 2016). Based on the prevalence reported here and known biting behavior of /.
pacificusand 1. spinipalpis, human encounters with B. bissettiae infected ticks are likely
very uncommon in the western US. In dry climates, /. spinipalpisis a nidicolous tick that

is rarely collected by drag sampling and seldomly comes into contact with humans, but it
tends to exhibit more open host-seeking behavior and will occasionally infest humans in
more humid environments (Eisen et al., 2006; Dykstra et al., 2020). Although less is known
about the enzootic cycle of B. /anei (formerly genospecies 2) (Postic et al., 1998, 2007;
Margos et al., 2017), /. pacificus adults were infected at similar rates to B. bissettiae and
the infection was similarly detected in /. spinipalpis. Additional surveillance is required to
assess the likelihood of human encounters with B. /anei-infected ticks, but based on our
limited sample, exposure probabilities appear similar between B. bissettiae and B. laner.

Although it is generally known as a non-human biting tick, occasional records of /. affinis
encounters have been recorded (Nadolny and Gaff, 2018; Eisen, 2022). /xodes affinis is
found in the southeastern US and in recent years, its geographic range has expanded
northward into North Carolina and Virginia (Mid-Atlantic region), where it co-occurs with
northern populations of /. scapularis (Brinkerhoff et al., 2014; Beati et al., 2022). In the
present study, using only type strains as references, we detected #/aB sequences closest to

B. carolinensisin [. affinis. Based on further analysis we found these sequences were most
similar to B. burgdorferi SCGT-10 (B. bissettiae, Lin et al., 2004), but a f/aB fragment

from a whole genome sequence was not available on GenBank for our analysis. Borrelia
carolinensis has previously been described in /. minorand rodents from the southeastern US
(Rudenko et al., 2009), and is closely related to B. bissettiae. Possibly Bbsl strain types from
the southeastern US that were once categorized as B. bissettiae, would now be classified

as B. carolinensis or even a new Bbsl species after additional MLST characterization or
whole genome sequencing. Golovchenko et al. (2016) reported a Bbsl isolated from a
patient in the southeastern US that clustered between B. bissettiae and B. carolinensis and
concluded this Bbsl was more closely related to B. bissettiae but could also represent a
novel Bbsl species. Previous studies detected Bbss and B. bissettiae in /. affinis in the
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Mid-Atlantic region (Maggi et al., 2010), and in some cases individual ticks were coinfected
with these pathogens. /xodes affinis feeds on a wide range of hosts, including at least 15
mammalian and one avian species (Maggi et al., 2010; Nadolny and Gaff, 2018) and has
been implicated as a key enzootic vector of Bbss and B. bissettiae in the Southeastern and
Mid-Atlantic regions (Oliver et al., 2003; Maggi et al., 2010). Consistent with a previous
study from coastal North Carolina (Maggi et al., 2010), we did not detect B. bissettiae or
B. carolinensisin I. scapularis tested from the Mid-Atlantic region. However, we did detect
Bbss in /. scapularis from the Mid-Atlantic region. Our findings, and those of Maggi et al.
(2010), suggest that although there is likely overlap in the B. bissettiae and Bbss enzootic
cycles, with /. affinis serving as an enzootic host, /. scapularis may be feeding on only a
subset of infected hosts. Further studies are needed in this region to elucidate the enzootic
transmission cycles of Bbss, B. carolinensis, and B. bissettiae and to determine the role of
1. affinis and 1. scapularis as vectors. Based on limited human encounters with /. affinis
(Nadolny and Gaff, 2018; Eisen, 2022) and the lack of detection of B. bissettiae or B.
carolinensisin [. scapularis in this study and in Maggi et al. (2010), we expect the rate

of human encounters with Bbsl infected ticks to be low in the Mid-Atlantic and Southeast
regions.

Using the MPAS assay, we also detected B. andersoniiin [. dentatus submitted from

the Upper Midwest and provide the first report of a sequence most closely related to B.
finlandensis in the US (detected in an /. spinipalpis adult submitted from the Northwest).
The numbers of ticks were too few to draw conclusions about enzootic maintenance, but
their rarity and detection in species that seldomly bite humans suggest low probabilities of
human encounters with ticks infected with these species. Perhaps it is not surprising that the
few additional potential human pathogens (B. bissettiac and B. kurtenbachii) described thus
far in the US (Girard et al., 2011; Rudenko et al., 2011, 2016; Golovchenko et al., 2016)
are the Bbsl species most commonly detected in ticks collected by drag sampling and most
commonly encountered by humans (/. scapularis and /. pacificus). Continued surveillance
and testing with an assay such as the MPAS used in this study that accurately detects and
identifies Bbsl and confirms species identities of ticks will aid in elucidating geographic
variation in human risk of exposure to Bbsl spirochetes.
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Fig. 1.

Flgwchart of the previously performed tick testing algorithm (TTA; blue) and the MPAS
assay, which was performed in this study (green). This flowchart only shows the Borrelia
testing workflow for the TTA. The samples that were selected for the MPAS testing were
identified based on the Borrelia TTA results. Bbsl: B. burgdorferi sensu lato, Bbss: B.
burgdorferi sensu stricto target, Bm: B. miyamotoi targets, Bmay: B. mayoniitargets.

Ticks Tick Borne Dis. Author manuscript; available in PMC 2024 February 20.

Tick ID confirmed



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Osikowicz et al.

Page 18

FST9 |pacificus WA (OQ915494)
B.bissettiae DN127 (CP002746)

FST91s

2 g

FST s WA (OQ8
FST16 L.scapulans MN (OQ915501)
B. kurtenbachii IL96-255 (0Q915483)
97 ' B kurtenbachii 25015 (CP124058)
B. carolinensis SCGT-18 (CP124072)
FST11 Laffinis VA SC (OQ915496)
FST12 Laffinis VA (0Q915497)
FST13 l.affinis VA (OQ915498)
B. californiensis CA20 (OQ915480)
B.californiensis CA443 (CP124076)
'rir B. americana CA171 (OQ915478)
B. americana SCW41 (CP124113)

FST20 Lspinipalpis WA (OQ215505)
Borrelia spp. CA910 (OQ915484)

FST17 Lspinipalpis WA (OQ 02)
B.lanei CA-28-91 (CP124054)

10 |.spinipaip

3

23 FST22 |.spir is WA (O
&4 - B.burgdorferi MM1 (CP031412)

14

B. burgdorferi NES248 (CP124104)
B.burgdorferi B331 (CP017201)
B.finlandensis 211 (CP124070)

FST14 |.spinipalpis WA (0Q915499)

79
FST6 |.dentatus NC (OQ915490)
FST7 ldentatus IN (OQ915491)
FST8 I dentatus IN (OQ915492)

FST1 |.dentatus VA (OQ915485)
FST2 . dentatus NC (OQ915486)
FSTS | dentatus IN (0Q915489)
FST3 |dentatus Ml VA (OQ915487)

72 ' B. andersonii 21038 (0Q923300)
L—— B.mayonii MN14-1420 (GP015780)

B. garinii EKb712 (CPO75418)
—m:n 5 | auritulus WA (OQ915500)
B.afzelii PBabu (CPOT5440)
93 [ B. turicatae BTESEL (CP073192)
B. parkeri SLO (CP073159)

B. hermsii HS1 (CP014349)
B.miyamotoi CT13-2396 (CP017126)

B.miyamotoi HT-31 (CP114703)
30— B.miyamotoi CA17-2241 (CP021872)

0.050

Fig. 2.
The flaB phylogenetic tree of representative Bbsl sequence types detected in the /xodes

spp. DNA samples. The representative sequences are color coded by the tick species in
which the sequences were found. The f/laB sequence type (FST), tick species, and state of
the representative sequence are included in the sequence name. The GenBank Accession
numbers for the reference sequences and unique sequences detected in this study are

in parenthesis. Bootstrap values are based on 1000 replicates. Red: /. pacificus, Blue: /.
spinipalpis, Green: /. affinis, Orange: /. scapularis, Purple: /. dentatus, Pink: / auritulus.
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*The GenBank reference sequences used in this phylogenetic tree belong to the Borreliaceae
family within the genus Borrelia (sometimes referred to as Borreliellafor Bbsl species).

Ticks Tick Borne Dis. Author manuscript; available in PMC 2024 February 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Osikowicz et al.

52

Page 20

76 | Ixodes pacificus (OQ916927)
38 | Ixodes pacificus (AF549854)

54 } Ixodes pacificus (AF309010)

— Tick A29 L.p. (WA)
55 Ixodes spinipalpis (L34297)
46 | Ixodes scapularis (AF309013)
Ixodes scapularis (L43855)
67 | | Ixodes scapularis (KR092230)

40

33 Tick A78 L.s. (IN)
= Ixodes dentatus (OQ916926)
Tick A89 L.s.(MI)
Ixodes affinis (KT037649)
Tick A22 I.s. (VA)
33 Tick A65 I.s. (VA)
Ixodes brunneus (OQ916925)
Ixodes angustus (0Q916924)
Ixodes cookei (OQ916931)
i'j Ixodes texanus (OQ916929)
Ixodes marxi (OQ816930)

— Ixodes signatus (OQ916932)

0
En—i— Ixodes auritulus (OQ916934)

—_
0.050

Fig. 3.

g3 | | Ixodes scapularis (0Q916928)
72 ' Ixodes scapularis (MG242325)
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ES
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The tick 16S mt-rRNA phylogenetic tree of /xodes spp. samples incorrectly morphologically
identified (bold). The GenBank Accession numbers for the reference sequences are

in parenthesis. Bootstrap values are based on 1000 replicates. The sequence name

for incorrectly identified tick samples include the sample number, abbreviation of the
morphological ID, and state in parenthesis. 1.p.: /. pacificus, 1.s.. 1. scapularis.
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